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Abstract
We present exact results on the electronic transmission through quantum stub
waveguides arranged in a Fibonacci quasiperiodic pattern. Discretizing the
Schrödinger equation, we map the problem into an equivalent tight binding
form and study the transmission spectrum using the transfer matrix method. We
emphasize the effect of local positional correlations in a Fibonacci quantum stub
array that may lead to resonant eigenstates. Using the real space renormalization
group ideas we unravel various local clusters of stubs responsible for resonance.
Extended eigenstates have been shown to exist and we find that, under some
special circumstances, the electronic charge density exhibits a totally periodic
character in such a non-periodic sequence. Our method is completely general
and can be applied to any arbitrary sequence of stubs: periodic, quasiperiodic
or random. This may lead to a possible experimental verification of the role
of positional correlations in the transport behaviour of a class of mesoscopic
devices.

1. Introduction

The study of electronic transport through mesoscopic devices has been one of the major areas
of research in condensed matter physics in recent times [1–12]. Electrons are transmitted
coherently across these systems with negligible inelastic scattering and the phase coherence
length is greater than the characteristic device scale length. The latter is of the same order of
magnitude as the de Broglie wavelength for mesoscopic systems. The tremendous advances
in fabrication techniques has led to the fabrication of a variety of quantum structures such as
quantum dots, quantum wires and rings [1–12]. At low temperatures the transport of electrons
in such mesoscopic systems is ballistic or quasi-ballistic and resembles the propagation of
microwaves through a waveguide. So, the allowed modes may be considered as the waveguide
modes and the transport properties are solely determined by the impurity configuration and
the geometry of the conductor [13].
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The propagation of electrons along quantum wires with various geometric structures
has been an interesting problem. Sols et al [6] have studied semiconductor stub structures
exhibiting transistor functions. They have shown that a small change of stub length changes the
transmission spectrum non-trivially. Experiments have also been done to verify the waveguide
characteristics of electron transport through a wide–narrow–wide structure by a splitting gate
technique [13, 14]. Earlier, Xia [10] proposed a simple one-dimensional waveguide theory
for a quantum wire with one or two stubs, and also for a ring with or without a magnetic
flux penetrating it. Singha Deo and Jayannavar [11] extended the theory to an assembly of
ring and stub structures. They have studied the non-trivial changes in band structure, both for
periodic arrays of stubs and a single defect within an otherwise periodic stub arrangement. Shi
and Gu [15] studied the quantum waveguide (QWG) transport with side-branch structures and
introduced impedance factors for geometric and potential scatterers and developed a recursive
algorithm. Simple tight binding results have recently been reported on the formation of
electronic bandgaps in a one-dimensional model of nano-wires [16]. The band structure is
found to be significantly sensitive to the number of atoms in the side wires, as well as to the
periodicity with which the wires are arranged on the backbone. Transmission of electrons
through non-interacting model nano-wires with dangling side branches still remains a problem
of interest, as has been suggested in some recent work [17, 18]. Partly motivated by these
studies, which indicate that the spectral properties of nano-wires with side branches should
be sensitive to the geometry of the arrangement, here we address the problem of electron
propagation in quasiperiodically ordered stub structures. We apply our theory to investigate the
resonant single-particle states and transmission characteristics of a Fibonacci array of stubs. In
a couple of recent papers Jin et al [19] and Peng et al [20] have studied some aspects of electron
transport in quasiperiodic quantum waveguides (QWG). However, we look at the problem
from a different standpoint. In particular, we make an analytical attempt to unravel the role of
positional correlation in the transport properties of a Fibonacci quantum waveguide (FQWG).
In a classic golden mean Fibonacci lattice comprised of point-like scatterers the single-particle
states are neither localized nor extended in a conventional sense [21–23]. Recently, it has
been pointed out [24] that the well known cyclic behaviour of the matrix map in a Fibonacci
lattice [21–23] and its variants is basically due to resonance in some local clusters in the
lattice which exhibit a hidden dimer-like positional correlation. Such ‘dimers’ are now known
to cause resonant or extended eigenstates in an otherwise random lattice [25–27] and even
in certain classes of quasiperiodic lattices [28, 29]. It should be mentioned here that one
of the early studies regarding the existence of extended wavefunctions in non-translationally
invariant one-dimensional quasiperiodic chains is due to Sire and Mosseri [30]. They have
nicely discussed the closing of gaps in the energy spectrum and the vanishing invariant and
have related these to the existence of extended eigenstates on rational approximants of general
quasiperiodic chains, which include the Fibonacci chain as well. However, for the golden
mean Fibonacci chain the dimers referred to earlier appear in a nested fashion, whose presence
can be revealed at different scales of length, depending on the energy of the incoming electron
and the parameters of the Hamiltonian [24].

In the present work we find that the effect of positional correlation in a FQWG structure
can be revealed at different scales of length by tuning the length of the stub. The length of the
stub can be controlled by the gate voltage from outside [5, 6]. Therefore, this aspect, to our
mind, promises an interesting experimental verification of the role of positional correlations in
enhancing dc conductivity in such mesoscopic structures. We also find that there are extended
eigenstates in a FQWG structure. Some of these states are completely periodic in nature. The
situation is easily contrasted to a purely 1D Fibonacci structure with point-like objects, where
all the eigenstates are critical [21–23]. We have been able to work out the conditions under
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Figure 1. General representation of a one-dimensional stub structure.

which a FQWG array will support such extended eigenstates. Our work is based on the transfer
matrix formalism and real space renormalization group (RSRG) method. For implementing the
latter, we have mapped the continuous version of the Schrödinger equation into a hierarchy of
difference equations, much in the spirit of the Poincaré mapping technique [34], usually done
in studying electronic transmission through an array of potential barriers. The discretization
allows us to identify the local clusters in a FQWG array, which are responsible for the resonant
eigenstates, and are intimately connected to the cycles of the matrix maps exhibited by the
sequence. We find that by altering the length of the stubs in a deterministic way we can extract
different values of the wavevector for which cycles of the matrix maps are observed. We also
present an interesting result which shows that, for some special choices of the stub lengths
and their relative separation, one can come across a whole set of values of the wavevector for
which the FQWG system exhibits a power-law decay in the transmission coefficient as the
system grows in size. Our results are analytical and exact.

In what follows we describe our method and the results. In section 2 we describe the
theory of multiple stub structures. Section 3 deals with the Fibonacci array. The resonance
conditions are discussed separately for different models. In section 4 we study the transmission
properties of a FQWG array. The values of the wavevector for which the transmittivity exhibits
a power-law decay as a function of system size is also addressed here. In section 5 we draw
some conclusions.

2. The theory of multiple stubs in series

We consider a quantum wire which is attached to a series of stubs perpendicular to it, as shown
in figure 1. The lengths of the stubs and their relative spacing vary along the wire and are
designated by bn and an, respectively. We take the quantum wire along the positive X direction
and assume that the scatterers are centred at points xn with respect to some suitable origin. If
the lateral cross section of a wire is assumed to be sufficiently small, electrons will occupy only
a few lowest quantum states at sufficiently low temperatures. As a result a strong confinement
of the motion of the electron in two transverse directions is possible. The electron then moves
only along the longitudinal direction. Here, no other scattering potentials are present, except
at the intersection of the stub with the wire. The electron is assumed to travel freely along the
stub and in the inter-stub zones. The length of the stub may be controlled by tuning the gate
voltage [5, 6] and is assumed to be rigid.

Let us consider an electron injected from one side of the structure with wavevector q . The
wavefunction in the nth segment (i.e. between the nth and the (n + 1)th stubs) is written as

ψn(x) = An exp[iq(x − xn)] + Bn exp[−iq(x − xn)]. (1)

The wavefunction in the nth stub is given by

φn(y) = Un exp[iq(y − bn)] + Vn exp[−iq(y − bn)]. (2)
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In writing the above equations, a local coordinate system is chosen for each segment and stub
in such a way that the origin is on the left-hand side of the segment [19, 20]. Matching the
wavefunctions and their derivatives at the nodes, one easily arrives at the matrix equation:(

An+1

Bn+1

)
= Qn+1,n

(
An

Bn

)
(3)

where

Qn+1,n =
(

1 − i cot(qbn)

2 − i cot(qbn)

2
i cot(qbn)

2 1 + i cot(qbn)

2

) (
exp(iqan) 0

0 exp(−iqan)

)
. (4)

We now cast the above set of equations into a discrete set of difference equations relating the
amplitudes of the wavefunction at any node n with those at the neighbouring nodes n − 1 and
n + 1. The set of difference equations is given by

(E − εn)�n = tn,n+1�n+1 + tn,n−1�n−1 (5)

where E = 2 cos qan, εn = 2 cos qan − cot qbn − cot qan − cot qan+1, tn,n+1 = 1/ sin qan+1

and tn,n−1 = 1/ sin qan. Equation (5) resembles a typical tight-binding description of a one-
dimensional lattice. �n is the amplitude at the nth node. εn is equivalent to the magnitude
of the on-site potential at the nth site and tn,n±1 stands for the values of the nearest-neighbour
hopping integrals. It should be mentioned here that the presence of the term E = 2 cos qan

above does not arise automatically. This has been added ‘by hand’ and subsequently been
taken care of in the expression of the on-site term εn . Here we have defined an = xn − xn−1

and �n = ψn(xn). The set of difference equations (5) thus define an electron which travels
in this lattice with a variable energy ranging between E = ±2. As the conclusions regarding
the resonance effects, as well as the transmission coefficient, depend on the difference E − εn ,
the addition and subtraction of the term 2 cos qan do not change the results, although it turns
out to be convenient in calculating the transmission coefficient in the present formalism. It is
customary to define a 2 × 2 transfer matrix:

Mn =
( (E−εn)

tn,n+1
− tn,n−1

tn,n+1

1 0

)
(6)

such that, (
�n+1

�n

)
= Mn

(
�n

�n−1

)
. (7)

3. Short ranged positional correlations and resonance

We define a generalized Fibonacci chain comprising of two different segments L (of length aL )
and S (of length aS), which are generated according to the rule L → LS and S → L. The first
few generations are: G1 = L, G2 = LS, G3 = LSL and so on. The stubs of length bL and bS

are also arranged in a Fibonacci sequence with inter-stub spacings aL and aS (figure 2(b)). On
the mapped lattice the on-site potentials now assume three distinct values, namely εα , εβ and
εγ , corresponding to the nodes (sites) flanked by L–L, L–S and S–L elements, respectively.
The nearest-neighbour hopping integrals are designated by tL and tS, corresponding to the L
and S segments (see figure 2). Here

εα = 2 cos qaL − cot qbL − 2 cot qaL

εβ = 2 cos qaL − cot qbL − cot qaL − cot qaS

εγ = 2 cos qaL − cot qbS − cot qaL − cot qaS

tL = 1/sin qaL

tS = 1/sin qaS.

(8)
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Figure 2. (a) A Fibonacci array of stubs of two different lengths bL and bS . The two spacings aL

and aS are also shown and (b) the equivalent one-dimensional lattice obtained on discretization.
The basic building blocks responsible for dimer-like correlations, and hence resonance, are marked
by circles (α sites) and boxes (βγ pairs), respectively.

Accordingly we need to define three different transfer matrices, which are

Mα =
( (E−εα)

tL
−1

1 0

)
; Mβ =

( (E−εβ )
tS

− tL
tS

1 0

)
; Mγ =

( (E−εγ )
tL

− tS
tL

1 0

)
.

The standard recursive scheme [21–23] of growing a Fibonacci sequence leads to a recursion
relation among the transfer matrices of different generations, namely M j = M j−2 M j−1, with
M1 = Mα and M2 = Mγ Mβ = Mγβ . The ‘allowed’ values of the wavevector q , for a specific
set of (bL , bS, aL , aS), are those for which |tr(M j )| � 2 [21–23]. The traces of the transfer
matrices M j are related to each other via a recursion relation [21–23]:

x j = x j−1x j−2 − x j−3 (9)

with x1 = Tr(Mα) and x2 = Tr(Mγβ) = Tr(Mγ Mβ). The above ‘trace map’ leads to a quantity
J given by

J = 1
4 (x

2
j + x2

j−1 + x2
j−2 − x j x j−1x j−2 − 4) (10)

which remains invariant for all values of j � 1. We are now in a position to discuss resonances
in different models of the FWQG array.

3.1. The on-site model

We take aL = aS = a and bL �= bS. We now have a Fibonacci sequence of equispaced stubs of
two different lengths bL and bS . This makes εα = εβ �= εγ , which leads to Mα = Mβ �= Mγ .
The nearest-neighbour hopping integrals are tL = tS = 1/ sin qa. For this model the invariant

can be worked out, using equations (8)–(10), to be equal to J = sin2 qa(cot bL q−cot bS q)
4 .

Now, let us choose qa = (2n + 1)π/2, n being an integer including zero. Then for
bL = 2m+1

2n+1 a and bS = 2p+1
2n+1 a, with m, n and p integers, chosen in such a way that m �= p for

a given value of n (so as to ensure that bL �= bS), it is simple to work out, using equation (8),
that a FQWG structure gets mapped onto a one-dimensional chain with εα = εβ = εγ = 0
and tL = tS = ±1. The situation is identical to a periodic sequence of indistinguishable atoms
having zero on-site potential and connected to the nearest neighbours by uni-modular hopping
integrals. The corresponding wavefunction is extended and perfectly periodic. Thus, even with
a FQWG with stubs of lengths bL and bS we come across a whole set of values of stub lengths
corresponding to a specific value of q , or equivalently an entire set of values of the wavevector
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q for a given set of bL , bS and a, for which an infinite Fibonacci segment of stubs will sustain
extended eigenstates. The individual transfer matrices Mα and Mγβ (=Mγ Mβ) will be equal
to iσy and −I , respectively, where σy is the Pauli matrix and I stands for the 2 × 2 identity
matrix. The transmittivity in this will be unity, as can be verified by the method described in
section 4. The invariant turns out to be zero for the above combination of parameters.

Before ending this discussion, it may be mentioned that the fact that Mα = iσy and
Mγβ = −I leads to a map M j+6 = M j , j � 1, as is usually seen in a Fibonacci sequence
[21–23]. This so-called ‘six-cycle’ of the matrix map can be traced back to the existence of
a pair correlation between certain clusters [24], which is rather straightforward in the on-site
model just discussed, but may not be that trivial in other models, as will be clear from the
subsequent discussion.

3.2. The transfer model

We now consider a transfer model where stubs of identical length bL = bS = b are spaced
unequally, i.e. aL �= aS. This makes εα �= εβ = εγ and tL �= tS. The invariant is given by
J = 1

4 cot2(bq) sin2(qaL −qaS). In a Fibonacci lattice, the pair of sites βγ appear side by side,
as well as in isolation, separated by the α sites (see figure 2(b)). The α site, on the other hand,
never appears pairwise. However, the cluster of sites α–βγ –βγ –α appears locally everywhere
(see figure 2(b)). The product transfer matrix across this block is MαMγβMγβMα . If we can
work out a condition for which the matrix product M2

γβ at the centre (corresponding to the
innermost quadrupletβγ –βγ ) turns out to be an identity matrix, the flanking Mα matrices come
side by side. Now, by tuning a different parameter of the system, if we can make M2

α = ±I as
well, then the local cluster of matrices MαMγβMγβMα = I . This is resonance in the above
local cluster. This happens locally throughout the chain. The clusters of sites βγ –βγ flanked
by the outer pairs α–α form the ‘nested’ dimers, in the spirit of [24–29]. This leads to a
six-cycle in the matrix map, as can be easily verified and has been explained elsewhere [24].
The resonating clusters in the above example are of the minimum possible size and are easily
identified at the lowest scale of length, i.e. on the original lattice. Using the RSRG method one
can identify such clusters at different scaled versions of the original lattice which correspond
to larger sized clusters at the basic length scale [24]. This, however, will need a different
relationship between the parameters of the system, such as the length of a stub or the relative
spacing between the stubs. We provide the simplest example below. We set

qaL + qaS = (2n + 1)π (11)

n being an integer. If we now tune the stub length b in such a way that cot qb = 2 cot qaS,
then it is easily seen that Tr(Mα) = 0, leading to M2

α = −I . The above parametrization yields
Tr(Mγβ ) = 2(2 cos2 qaS −1). Therefore, for qaS = (2m +1)π/4, Tr(Mγβ) = 0 and hence the
product MγβMγβ = −I as well. That is, the requirement MαMγβMγβMα = I is satisfied for
the above choices of b, aL and aS. The specific values of the wavevector are easily obtained.
In fact, for q = (2n + 1)π/(aL + aS) with aL and aS suitably chosen, one can come across a
whole set of values of b, given by b = aL +aS

(2n+1)π cot−1(2), for which resonance will take place.
We now present a more general model.

3.3. A mixed model

Let us choose qaL = (2n + 1)π/2, qaS = (2n + 1)π/6 and qbL = (2m + 1)π/2. Here, n
and m are integers which may or may not be equal. With these parameters, Mα = iσy , so that
M2
α = −I . This will happen for an infinite number of values of bL , depending on m, for fixed

values of the wavevector q and the spacings aL and aS . The choice of values for bS remains
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open. A straightforward algebra reveals that, for qbS = cot−1(2/
√

3), Tr(Mγβ ) = 0. This
makes MγβMγβ = −I . In this case Mγβ �= iσy . Here, the minimal resonating clusters are
α–βγ –βγ –α as before and are identified easily at the bare length scale.

In order to unravel clusters bigger than α–βγ –βγ –α in the original lattice, one efficient
way is to look for a similar cluster in a one-step renormalized lattice [24]. The process of
renormalization is well known in the literature [31]. The basic idea is to decimate the β sites
so as to obtain a new Fibonacci chain with renormalized values of the parameters. We provide
the appropriate recursion relations for the sake of completeness:

ε ′
α = εγ +

t2
L + t2

S

E − εβ

ε ′
β = εγ +

t2
S

E − εβ

ε ′
γ = εα +

t2
L

E − εβ

t ′
L = tL tS

E − εβ
t ′
S = tL .

(12)

On this renormalized lattice one can again identify the α sites and the βγ pairs. Let us stick
to the earlier choice of qaL and qaS. On the one-step renormalized lattice the condition
Tr(Mα) = 0 leads to the requirement

(cot qbL +
√

3)(cot qbS +
√

3) = 5. (13)

As before, we then try to make Tr(Mγβ ) = 0 on the renormalized lattice. A simple algebra
shows that this can be achieved if we set qbL = cot−1(−8/

√
3)+nπ . This choice of qbL leads

to qbS = cot−1(−2
√

3). Thus, for a given value of q , a proper tuning of the stub lengths reveals
a correlation between βγ pairs and α–α pairs on a rescaled version of the lattice. The minimal
clusters α–α and βγ –βγ on the renormalized lattice correspond to the clusters βγ –βγ and
αβγ –αβγ , respectively, in the original (un-renormalized) lattice. This analysis can proceed
indefinitely. The above pairs can, in principle, be identified at any stage of renormalization.
They will correspond to bigger and bigger clusters on the original lattice. The six-cycle of
the matrix map will set in at an appropriate generation of the Fibonacci chain [24]. It may be
mentioned here that, in a purely one-dimensional lattice, the six-cycle behaviour of the full
matrix map is not easy to locate for different values of the energy of the electron. The FQWG
structure, on the other hand, provides a wide range of q values, leading to the cyclic variation
of the matrices that can be determined precisely. The adjustment of the stub lengths is, of
course, necessary.

In figures 3(b) and (c) we plot |ψ|2 at the nodes for a lattice with 233 stubs. The
distributions correspond to a six-cycle wavefunction in the present mixed case. Figure 3(b)
represents the case where the positional correlations are explained at the basic length scale by
the α–βγ –βγ –α clusters, while figure 3(c) shows the same due to the clusters βγ –βγ and
αβγ –αβγ .

4. Electronic transmission through waveguides

We present the results of our calculation for the on-site model and the transfer model. A more
general model can be easily addressed. To calculate the transmission coefficient across a j th
generation FQWG array made of equispaced stubs of unequal length, we embed the effective
one-dimensional lattice obtained on discretizing the Schrödinger equation into a perfectly
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Figure 3. (a) Charge density corresponding to a six-cycle wavefunction where the clusters
responsible are: α–α and βγ –βγ . We have chosen qaL = π/2, qaS = π/6, qbL = π/2
and qbS = cot−1(2/

√
3). (b) Charge density obtained by resolving the correlations on a one-step

renormalized lattice. Here, qbL = cot−1(−8/
√

3) and qbS = cot−1(2
√

3). Other parameters
are the same as in (a). Clusters responsible for resonance are βγ –βγ and αβγ –αβγ . The charge
density in (b) has been displayed within a value of 50 to make the lower values more prominent in
comparison to much higher (finite) values, particularly at sites 43–46.

ordered tight binding lattice, acting as a lead. The on-site potential and the nearest-neighbour
hopping in the lead are taken to be ε0 and t0, respectively. In order to be consistent with the
parametrization E = 2 cos qaL we shall fix ε0 = 0 and t0 = 1. Using the trace and anti-trace
maps [32, 33], the transmission coefficient for the j th generation chain is given by

T ( j) = 4 sin2 qaL

(z j cos qaL − y j)2 + x2
j sin2 qaL

(14)

where x j = Tr M j , y j = M j (2, 1) − M j (1, 2) and z j = M j (1, 1) − M j (2, 2), respectively.
The so-called ‘anti-traces’ y j and z j obey the following recursion relations [33]:

y j = x j−1 y j−2 + y j−3

z j = x j−1z j−2 + z j−3.
(15)

The initial values of x , y and z are easily obtained from the recursion relations (9) and (13)
by noting that M1 = Mα = Mβ , M2 = Mγ Mβ and M3 = Mγ MβMα . The transmission
coefficient for the on-site model turns out to be a periodic function of qaL , the period being
equal toπ . Within a single period the transmission coefficient exhibits both resonance and anti-
resonance. In figures 4(a)–(c) we show the variation of the transmittivity for a fifth generation
FQWG with bL = 2 and 3 for the fifth and eighth generation chains in the on-site model. In
each situation we have taken aL = aS = 1 and bS = 1. It can be seen that within one period the
number of sub-bands is equal to the numerical value of the length of the stub bL (when bL has
an integral value), measured in units of aL . Anti-resonance takes place at qaL = (2n + 1)π/2
whenever bL = 2n, n being an integer. The above values of qaL turn out to be points of
anti-resonance for bL = (2n + 1). Figure 4(c) exhibits the fragmentation in the transmission
spectrum as the system size is increased to represent an eighth generation chain. In each
figure we also present the variation of the invariant with qaL . In figure 4(a), the invariant
never reaches the value zero, though it diverges at the gap between the two sub-bands within
a period. In figure 4(b), however, the invariant becomes zero as the transmission coefficient
attains the value unity in the middle of the central sub-band at qaL = π/2. In all three figures,
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Figure 4. (a) Transmission (full curve) across a fifth generation Fibonacci array (8 stubs). We have
chosen aL = aS = 1, bS = 1 and bL = 2. (b) Same as (a), but with bL = 3. (c) Transmission
spectrum for an eighth generation array with 34 stubs. The parameters are the same as in (a). The
invariant in each case has been shown by the broken curve.

the transmission coefficient is periodic in qaL with a period equal toπ . This, however, depends
on the choice of the stub length.

In figures 5(a) and (b) results for the transfer model are presented for a Fibonacci segment
of eighth generation. In either case we have selected aL = 1 and aS = 0.5. The results reveal
the sensitivity of the transmission spectrum on the lengths of the stubs. For bL = bS = 0.25 (in
units of aL) a window of (almost) perfect transmission appears symmetrically on either side of
qaL = 2π , which is the centre of the spectrum within one period (figure 5(a)). The transmission
coefficient in this case has a periodic in qaL with a period equal to 4π . On increasing the
stub length, namely to bL = bS = 1, the period of the transmission spectrum is reduced to
qaL = 2π . The central transmission window disappears and gaps open in the transmission
spectrum at and around qaL = nπ . This is shown in figure 5(b) where we plot the spectrum for
two periods. Within each period the transmission spectrum exhibits a two sub-band structure.
In each figure we also show the variation of the invariant J against qaL . The invariant remains
zero (or vanishingly small) in the central transmission window in figure 5(a) and also in the
zones of high transmission (T ∼ 1) in figure 5(b) and tends to diverge at the gap separating
one sub-band from the other in one period (see figure 5(b), for example).

4.1. Commuting matrices and a power-law decay in T

We now present one case where the transmission coefficient in a pure transfer model of a
FQWG can be worked out, by hand, to exhibit a power-law decay as the system increases in
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Figure 5. (a) Transmission coefficient for an eighth generation Fibonacci array of stubs in the
transfer model. We have taken aL = 1, aS = 0.5 and bL = bS = 0.25. In (b) aL = 1, aS = 0.5
and bL = bS = 1. The invariant is once again shown by the broken curve. In each figure, the range
of qaL values has been scanned in an interval of 0.001.

size. This is possible at special values of the wavevector q on simultaneous adjustment of the
values of the stub lengths and their relative spacings. Let us choose q(aL − aS) = 2nπ and
b = (2m + 1)(aL − aS)/(2n), where m and n are integers, either equal or unequal. It should be
appreciated that choosing qaL = 2nπ + qaS makes tL = tS on the equivalent 1D chain while
keeping a perfect Fibonacci order in the original arrangement of stubs. This makes J = 0
and [Mα,Mγβ ] = 0. It is then straightforward to work out that, for the above combination of
parameters and for a large system size ( j → ∞):

T ( j) ∼ 4 sin2(qaL)

4F2
j [1 + cos(qaL)]2 + sin2(qaL)

(16)

where Fj is the total number of bonds in the j th generation FQWG segment. Thus, in this
special situation the transmission coefficient decays, for a given value of the wavevector, in
the manner T ∼ 1/F2

j as the system grows in size. Before ending this section, it should be
pointed out that such behaviour has also been observed for special models of a Fibonacci chain
by Maciá and Domı́nguez-Adame [35].

5. Conclusion

We have developed a method of showing the single-electron transport through quasiperiodic
quantum waveguide structures. We apply the method to a series of stub-like objects arranged
in a Fibonacci sequence. In particular, our emphasis has been on establishing the relationship
between the parameters of the system for which local clusters in a Fibonacci sequence conspire
to give rise to resonance effects. The cyclic variation of the global transfer matrices are
closely linked with these short ranged positional correlations, which can possibly be studied
experimentally using such mesoscopic devices. The existence of extended eigenstates has also
been discussed. The method is readily applicable to any quasiperiodic or random geometry.
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